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Abstract

Sliced inverse regression (SIR), introduced by K.C. Li in 1991, is a very general and fast
procedure for dimension reduction in regression. For small samples, however, results of SIR are
influenced by the choice of slices. In this paper, we propose a fuzzified version of SIR in which
slices are replaced by fuzzy clusters. We compare the small sample behavior of the original SIR
and the proposed one on simulated data.

1 Introduction

Sliced inverse regression (SIR) is a useful method for extraction of geometric information
underlying noisy data of several dimensions. Since being proposed in 1991 [1], due to its
computational simplicity, SIR has gained a lot of interests from researchers involved in
high dimensional data analysis. Its recent development includes the works in [2, 3].

In theory, SIR has the Fisher consistency property. Namely, it has no estimation bias.
However, in practice, e.g., when the sample size is small, the results of SIR are influenced
by parameters given by the user, i.e., the number of slices and the slice positions.

In this paper, we address the issue on the positions of slices in SIR, and resolve it by
introducing a concept of fuzzy clustering [4] into SIR. Consequently, we propose a method
called fuzzy clustered inverse regression (FCIR) that outperforms SIR for small samples.

In the rest of the paper, we review SIR in Section 2. Section 3 describes the proposed
FCIR. The small sample behavior of SIR and FCIR are then analyzed on simulated data
in Section 4.

2 Sliced Inverse Regression

The regression model considered for SIR is as follows:

y = g(βT
1 x, βT

2 x, . . . , βT
Kx, ε), (1)

where y is a univariate output variable, x a p-dimensional variable of interest, ε an error
term independent of x with unknown probability distribution. The superscript T repre-
sents transpose. The function g and K p-dimensional vectors β1, β2, . . . , βK are unknown.
The task here is to find space or subspace spanned by β1, β2, . . . , βK.

For the data set (y1,x1), . . . , (yn,xn) with (p + 1) variables and n cases following the
above regression model, the algorithm of SIR consists of the following steps.
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sample # 1 2 3 4 5 6 7 8
yi 0.80 0.75 0.70 0.65 0.60 0.15 0.10 0.05

slice 1 1 1 1 1 0 0 0 0
slice 2 0 0 0 0 1 1 1 1

Table 1: Slicing of samples in SIR. If yi ∈ slice h, the corresponding element = 1; otherwise,
0.

Step 1. Sort the data by y in either increasing order or decreasing one.

Step 2. Divide the data set by y into H slices as equally as possible.

Step 3. For each slice h, compute its sample mean of xi’s, x̄h = n−1
h

∑
yi∈slice h xi, where

nh denotes the number of cases in slice h.

Step 4. Compute the covariance matrix for the slice means of xi’s, weighted by the slice
sizes as follows: ∑̂

s
= n−1

H∑
h=1

nh(x̄h − x̄)(x̄h − x̄)T ,

where x̄ denotes the sample mean of xi’s and hence x̄ = n−1 ∑n
i=1 xi.

Step 5. Compute the sample covariance for xi’s,
∑̂

x = n−1 ∑n
i=1(xi − x̄)(xi − x̄)T .

Step 6. Find the SIR directions by conducting the eigenvalue decomposition of
∑̂

s with
respect to

∑̂
x: ∑̂

s
β̂i = λ̂i

∑̂
x
β̂i, (2)

where λ̂1 ≥ λ̂2 ≥ . . . ≥ λ̂p, and the i-th eigenvector β̂i is called the i-th SIR direction.

For Step 2, one can choose slices of equal range or slices of equal (or mostly equal)
number of samples. Empirical studies in the literature show that the second approach
seems to be better. However, for small samples, this approach poses a problem as illus-
trated in Table 1, where it is assumed that the output variable y has been already sorted
in decreasing order. In this table, we can see that though y5 is nearer to the members of
slice 1, y1, y2, . . . , y4, it is assigned to slice 2 in order to make the number of samples in
the two slices equal.

3 Fuzzy Sliced Inverse Regression

To solve the slicing problem discussed in Section 2, we propose to perform clustering
of samples, rather than slicing. A clustering algorithm that we use is Bezdek’s fuzzy
C-means algorithm [4].

Table 2 gives clustering results for the same samples used in Table 1. The membership
degrees of cluster 1 and cluster 2 for y5 represent expected results.

Now, we propose FCIR, a variant of SIR that exploits the fuzzy clustering results. The
algorithm of FCIR consists of the following steps.
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sample # 1 2 3 4 5 6 7 8
yi 0.80 0.75 0.70 0.65 0.60 0.15 0.10 0.05

slice 1 0.9837 0.9962 0.9997 0.9883 0.9883 0.0079 0.0000 0.0057
slice 2 0.0163 0.0038 0.0003 0.0117 0.0117 0.9921 1.0000 0.9943

Table 2: Fuzzy clustering of the same samples in Table 1. Here elements 1 and 0 in Table
1 are replaced by membership degrees of the corresponding clusters.

Step 1. Cluster the data by y into H clusters using FCM.

Step 2. Let uhi denote the membership degree of cluster h for yi, and ηh =
∑n

i=1 uhi

denote the size of cluster h. For each cluster, compute its cluster center in vector
space of x, v̄h = η−1

h

∑n
i=1 uhixi.

Step 3. Compute the covariance matrix for the cluster centers, weighted by the cluster
sizes as follows: ∑̂

f
= n−1

H∑
h=1

ηh(v̄h − x̄)(v̄h − x̄)T ,

where x̄ = n−1 ∑n
i=1 xi, and note here that in FCM n =

∑H
h=1 ηh.

Step 4. Compute the sample covariance for xi’s,
∑̂

x = n−1 ∑n
i=1(xi − x̄)(xi − x̄)T .

Step 5. Find the FCIR directions by conducting the eigenvalue decomposition of
∑̂

f

with respect to
∑̂

x: ∑̂
f
ν̂i = θ̂i

∑̂
x
ν̂i, (3)

where θ̂1 ≥ θ̂2 ≥ . . . ≥ θ̂p, and the i-th eigenvector ν̂i is called the i-th FCIR
direction.

4 Simulations

In the following two examples, each element of 10-dimensional variable of interest x1, x2, . . . , x10

and the error term ε are generated independently from the normal distribution with mean
0 and variance 1.

In the first example, we consider a linear model

y = 5 + x1 + x2 + x3 + ε,

and in the second example a transformation-inside model

y = (5 + x1 + x2 + x3)
2 + ε.

It is obvious that β = (1, 1, 1, 0, 0, 0, 0, 0, 0, 0)T .

Since the direction of β is identifiable, we use the following efficiency measure for the
estimated b̂ of this direction (b̂ = β̂1 for SIR and b̂ = ν̂1 for FCIR):

e(b̂, β) =
(b̂T ∑̂

xβ)2

(b̂T
∑̂

xb̂)(β
T
∑̂

xβ)
.
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n − H 60-10 60-20 60-30 80-10 80-20 80-30 100-10 100-20 100-30
SIR Mean 0.8445 0.7504 0.5768 0.9211 0.8969 0.8042 0.9605 0.9574 0.9430
SIR Std. 0.0846 0.1654 0.2416 0.0400 0.0584 0.1351 0.0191 0.0216 0.0286

FCIR Mean 0.8677 0.8045 0.6524 0.9299 0.9117 0.8732 0.9654 0.9602 0.9510
FCIR Std. 0.0657 0.1175 0.2125 0.0359 0.0481 0.0747 0.0165 0.0198 0.0256

Table 3: Mean and standard deviation of the efficiency measure of SIR and FCIR for the
linear model.

n − H 60-10 60-20 60-30 80-10 80-20 80-30 100-10 100-20 100-30
SIR Mean 0.9116 0.8592 0.7416 0.9650 0.9565 0.9097 0.9949 0.9971 0.9937
SIR Std. 0.0467 0.0937 0.1829 0.0202 0.0264 0.0567 0.0029 0.0019 0.0043

FCIR Mean 0.9225 0.8876 0.8008 0.9688 0.9596 0.9428 0.9967 0.9957 0.9936
FCIR Std. 0.0402 0.0600 0.1270 0.0184 0.0245 0.0358 0.0026 0.0044 0.0067

Table 4: Mean and standard deviation of the efficiency measure of SIR and FCIR for the
transformation-inside model.

Note that 0 ≤ e(b̂, β) ≤ 1. The efficiency measure e(b̂, β) is 1 when b̂ and β indicate
the same direction. On the contrary, when b̂ and β are orthogonal to each other, e(b̂, β)
becomes 0.

Tables 3 and 4 give the mean and standard deviation of the efficiency measure of SIR
and FCIR for the above linear model and transformation-inside model, respectively. For
each combination of the number of cases n and the number of slices or clusters H, 1000
simulated samples were generated.

As we can see from the two tables, FCIR performs better than SIR for small samples,
n = 60 or 80. Namely, compared to SIR, FCIR gives higher means and lower standard
deviations of the efficiency measure. In addition, for small samples, the performance of
FCIR drops more gracefully, as H being increased. For larger samples, n = 100, their
performances become comparable.

5 Conclusions

The new method FCIR, a fuzzified version of SIR, that we have proposed appears to
perform better than the original SIR for small samples. An issue remained unsolved in
the paper is on practical numbers of clusters. For this issue, pooling methods discussed
in [3] might be applied to FCIR. How to deal with a case where outliers reside in the data
is also a challenging issue. We leave both of them as our future work.
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